Skip to main content

NeurIPS

2024


On Divergence Measures for Training GFlowNets

Novel approach to training Generative Flow Networks (GFlowNets) by minimizing divergence measures such as Renyi-$\alpha$, Tsallis-$\alpha$, and Kullback-Leibler (KL) divergences. Stochastic gradient estimators using variance reduction techniques leads to faster and stabler training.