Prior Specification for Bayesian Matrix Factorization via Prior Predictive Matching
A method for prior specification by optimizing hyperparameters via the prior predictive distribution. This approach matches virtual statistics generated by the prior to certain target values. We apply it to Bayesian matrix factorization models, obtaining a close-formula for the rank of the latent variables, and analytically determine the matching hyperparameters, and extend it to general models through stochastic optimization.